MTH 408/522: Numerical analysis

Homework II: Newton's method and its extensions

(Due 09/09/19)

Problems for turning in

1. The iteration equation for the Secant method can be written as

$$
p_{n}=\frac{f\left(p_{n-1}\right) p_{n-2}-f\left(p_{n-2}\right) p_{n-1}}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)} .
$$

Explain why this iteration equation is likely to be less accurate.
2. Determine the order of convergence of the following sequences.
(a) $p_{n}=1 / n^{k}, k>0$.
(b) $p_{n}=10^{-2^{n}}$.
(c) $p_{n}=10^{-n^{k}}, k>0$.
3. For any $\alpha>1$, construct a sequence $p_{n} \rightarrow 0$ of order α.
4. Determine, within 10^{-6}, the only negative zero and the four smallest positive zeros of the function

$$
f(x)=\ln \left(x^{2}+1\right)-e^{0.4 x} \cos (\pi x),
$$

which has infinitely many zeros.

Problems for practice

1. In each of the following, use the Newton-Raphson, Secant and Regula Falsi methods for finding solutions to the equation $f(x)=0$ in the interval $[a, b]$ accurate to within $A C C$.
(a) $f(x)=230 x^{4}+18 x^{3}+9 x^{2}-221 x-9 ;[a, b]=[0,1] ; A C C=10^{-6}$.
(b) $f(x)=x^{2}-4 x+4-\ln (x) ;[a, b]=[2,4] ; A C C=10^{-7}$.
(c) $f(x)=\sin (x)-e^{-x} ;[a, b]=[3,4] ; A C C=10^{-5}$.
(d) $f(x)=2 x \cos (2 x)-(x-2)^{2} ;[a, b]=[3,4] ; A C C=10^{-5}$.
(e) $f(x)=\ln (x-1)+\cos (x-1) ;[a, b]=[1.3,2] ; A C C=10^{-5}$.
(f) $f(x)=x+1-2 \sin (\pi x) ;[a, b]=[0.5,1] ; A C C=10^{-7}$.
2. Determine the number of iterations required to find a root of $f(x)=\cos (x)-x$ within 10^{-7} with an initial approximation $p_{0}=\pi / 4$.
